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SOLUTION OF A PLANE STEADY HEAT CONDUCTION PROBLEM WITH
BOUNDARY CONDITIONS OF THE THIRD KIND FOR REGIONS OF SPECIAL

TYPE
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Inzhenerno- Fizicheskii Zhurnal, Vol. 10, No. 6, pp. 728-737, 1966

UDC 536,21

It is shown that the steady problem of heat conduction theory for
regions bounded by cochleas of order 4m +2(m =1, 2, 3,..., N),
which emit heat from their surfaces according to Newton's law, is
reduced by conformal mapping to the solution of certain equations
in finite differences, For the case m = 1 the solution of the equations
is expressed in terms of Bessel functions, and formulas for the tem=
perature distribution are obtained.

INTRODUCTION

Certain steady problems in heat-conduction theory
reduce to solution of the Laplace equation [9]

Pu , Fu

o o =0onD 1)
with the boundary condition
du
5;+hu|8=f(p), @)

where h is a positive constant, and f(p) is a given
function.

In general the boundary conditions {2) do not per-
mit effective use of the method of conformal mapping
for solving the problem, We may select a class of
regions, however, for which the function accom-
plishes conformal mapping of the given region onto a
circle, is represented by the Newtonian binomial of
odd order [4]

W = R(g+ AP+ B, (3)

where

m—1,2 3. ., N, t=pexpif h> l/sin——o-.
§=pexp g 2m41

In this case the problem for the circle reduces to the
solution of the equations in finite differences. Solu-
tion of these equations may be represented in the
form of Laplace contour integrals, Curves corre-
sponding to the unit circle in the £ plane constitute
a family of cochleas of high order, *

Using the equation of circle £ £ = 1, it is not dif-
ficult to obtain from (3) the equation of the curves in

*The order of the curves is equal to 4m + 2, The
case m = 1/2 corresponds to the family of Pascal
cochleas,

polar coordinates

e —— Ot
r=R{?\,cos v_ . |/1—7u25in2—1p—— ]} , 4
2m+1 2m+1

where

A > 1/sin m=1,2,3,...,N.

om+1’
The length of the arc of curves (4) is a rational func-
tion of the parameter [9]:

+= - .
Sa“%‘%\de =(2m -+ I)Rg(l + 2hcosB 4+ A)mdB =

p=!1

1

—~ 2R R(@m + 32— 1y Pm(i'i——l—), ©)

where the Py, are Legendre polynomials.

1. FORMULATION OF THE PROBLEM FOR A CIRCLE
AND ITS REDUCTION TO AN EQUATION IN FINITE
DIFFERENCES

In conformal mapping of (3), Eq. (1) and boundary
conditions (2) transform to the form [1]

2
p_a_( pﬂ‘_)_{_%:Oonthe circle )

with the boundary condition

_g_u AR (2m+1(1+2hcos 8 4w u| =[0), (7)
Y

p=1

where f;(9) is a given function satisfying the Dirichlet
conditions in the interval —7 < 6 = +1, Then [3]

be |\ o
f.(8) =—2——|— Ebncosn6»¢ c,sinno. 8)

n=1

The special feature of the case being examined,
which allows an exact solution to be obtained, consists
of the fact that the coefficient

h(B):hI%\ — hR(2m 4 1)(1-£2hcos+A3"  (9)
peel »
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is a trigonometric polynomial:

h(9)=2akcoske>0, —n <8<+, (10)
k=0
where

aﬁ{_ h(8)coskBd®, a = — (h(@®)d6.  (11)
™~
0

To evaluate the coefficients (11) we shall use the
equality [3]

_2_}(1 + 20 cos @ - A cos kOO —

A1y,
Pr ( 32— ) 12)

— 2(;‘2 ])m F(m nad 1)
T(m4-k4-1)

Using (5), (11), and (12), we obtain

h(g)_lz_S_{ 27 (m+1)
P P12+ 1)/(32—1)]

PEI(R+1)/(A2—1)]
o Tim+k+D)

where S is the length of arc of the curve; m = 1, 2,

3y ...» N; Alis a parameter; h is the heat-transfer
coefficient; and Pmk are the associated Legendre
functions, We shall seek a solution of the problem (6),
(7) in the form

)
X cosk@. } (13)

an [A,cosn8 + B,sinng). (14)

n==]

U= Ao/Q'{—

Substituting (14) in boundary conditions (7), we obtain
for determination of the expansion coefficients the
system of difference equations:

R ‘
(ﬂ + aﬂ) A1+ ———Zak [An+k =+ An—k] = b“,
2 k=1
fl=0,l,2, 37 sery (15)

{n+ Q) Bn -+ %—Eak [Bn+k + Bl =¢,,

k=1

n=1213,.. (16)
with the condition
A,—~0 B,—»0
o> ® >0 (17)
A,=A., n=123...m (18)
B,=—B_, n=0,1,23,... m~l. (19)

Solution of equations in finite differences of type
(15) and (16) has been examined in [5, 7]. Conditions
(17)—-(19) allow the expansion coefficients Ay and By
to be determined uniquely,
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2. SOLUTION OF EQUATIONS IN FINITE DIFFER-
ENCES

It is known that the general solution of the differ-
ence equations (15) and (16) has the form:*

m
— T, Y on Ay (), 20)

keal]

where A, is a particular solution of the inhomogeneous
equation; Ay (n) are linearly independent solutions of
the homogeneous equation; wy are arbitrary periodic
functions with unit period,

Following the method of Laplace, we shall seek a
solution of (15) in the form

A, = ft—n—l vV (t)dt. (21)
1
Integrating by parts, we obtain

nA, = Sz—n—l V(B dt — V@Y (22)

T ¥

Anee :jrw eV (ydt, k=+ 1,T2, ., Tm.  (23)
hd

Let**

b, = 5’,_,1,1 o (0 di. 24)
Y

Substituting (21)—(24) into (15), we find
\t~n~1it\/' 0 +—1—[Eak (tk-}— J—)]v 0) _cp(z)Edz =
¥ § 2 =01 1 )

=tV () -
\

(25)

We shall choose the contour of integration and the
function V(t) from the conditions

, 1 [ 1
V) =010k 7[§ak(tk+ Tk)]”t) = ol0). (26)

The solution of (26) will be
V(y=F @)+ Vo), @7)

Vo(t) = t=2exp { —Q, (1)}, (28)
where

1
Fif)= 1o exp [—Q,(0)} {10+~ gtrlexp| @y(3) v, (29)

Q.

ml-—

E__I:_(tk___;_>’ Oy = la, lexpia. (30)

*Equations (15) and (16) differ only in the "initial"
conditions, and it is therefore sufficient to examine
one of them.

**For this it is sufficient that f1(6) satisfies the
Dirichlet conditions.
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In the plane t we may choose 2m rays on which
function (28) tends to zero for any a. k=0,1, 2,
3, ..., m) [5]:

¢ = Zak @ k=0,1,2, .., m—1]
m m
Va(pexpige) —0 1)
p-—>0c0o,
2k 41
Ypoo (———ii 2 k--0,1,2, ..., m—1
m m
Vol(pexpin,)— 0. (32)
o -0

We shall designate by v;.,, the integration paths
located inside the sector ¢ = ¢ = @y, (0 < p = ),
and by 'y, paths located inside the sector ¢ k==
= Py (0 = p < ), 7y, consists of the unit circle and

parts of the section ¢ =0, ¢ = 27 |1 = p = «|, Then
the solution of the equations (15) will be*
m
A =2 [ v ar (33)
27 B

A‘k’(ﬂ)=~§:—i51—"—lvo(1)dt, k=1,2,3,..,m, (34)
T

y T gt—"—lF(t)dt. (35)

" 2mi H

For the integrals (33)—(35) we may obtain an asymp-
totic representation for large n {8]:

Ap(n) »exp( 2k—1 . )
k ﬂ_’w{ - m(n-{-ao)}x
n—l—a,,
A" ) e
A¥)(ny - exp [ 2k n+a
(’)1»009{ nt(n—}—ao”sm . —_— /:]X
n4-a,
X[F(ﬂ+ao )/ (f‘.m_) ] @37)
m 2m
— b = ¢ . .
A, t ., B, - 2, is not an integer. (38)
n—a, n-taq,
n—>» o n-—» o0

It follows from (36)—(38) that the limited solutions of
(15) and (16) contain only m arbitrary periodic func-~
tions each:

m

4, ;A:-% Yo 4

k=1

& (12 -+ Qo) (39)

m

B, + You Au(n +a). (40)

k-1

B,

*Since VO(-t_) = Vy(t), integrals taken along contours
symmetrical relative to the real axis will be complex
conjugates. When A >0 o =0,
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From conditions (18) and (19) for wy and $k we have
the system of algebraic equations*

A—A, -}-Zwk [Ayao+5)—Aplay—s) =0

Je=1

(s=1,23,..,m)), (41)
B+ By + Yo lAulan +9) + Ay @—s) — 0
k=1

(s=0,1,2,3, ..., m—1). (42)

Thus, the expansion coefficients in (14) are de-
termined from (39) and (40), where Ay(n), A, and B
are given by the integrals (33)—~(35), while the arbi-
trary periodic functions are found from the system of
algebraic equations (41), (42) of order m.,

EXAMPLES OF SOLUTION OF CERTAIN PROBLEMS
OF MATHEMATICAL PHYSICS

Example 1. We shall-examine the solution of the
problem (1) for regions bounded by a family of coch-
leas of order 6. From (4) and (5) we have

) S [y cne ¥ . w}s
Fo=m —— 1) -+ )2 2_Y 1
6r(1+7»2)1 cos 3 _‘/1 A2Zsin 3

— 3arcsin < ¢ < 4 3arcsin L , (43)
IN

1
A

where A = 2/V3 is a parameter, and 8 is the length of
arc of the curve,
Under conformal mapping, we obtain

2
o 2 ( p O + du = 0 on the circle, (44)
dp ap 062

with the boundary condition

ou hS 25
LR R B =, (8),
St [ e e =he 69

p=!

where f;(9)
conditions

is assigned and satisfies the Dirichlet

bo

f(e)__—2——! El)ﬂcosr2e+cnsinn9 [—m <0< 4 =|; (46)

n-—=1

h is the heat-transfer coefficient;
hS hS A
g o=

o) 4= ;
2n a 1--A2

(7

— A” ' N n s ! H
u—-2——r-2p [Anco§n6;;AB“51n11 01. (48)

n—1

*It may be shown that the determinants of the sys-

tem (41), (42) are not equal to zero under the condi-
tions h(8) > 0 |-7 = 0 = +7| (see (10)).



JOURNAL OF ENGINEERING PHYSICS

The coefficients A;, and By are determined from
the equations

(1 + ap) A, + “7 [Apss + Apal = b, (49)
n=0,1,2,8 ..., 4 =A_, (50)

(n+ ag) B, + —‘;LIBM + Byl =6y (51)
n=123,.. By=0. (52)

The solution of a homogeneous equation will be
A(n) = (— 1" [0y Inya, (@) - 03 Yara, (@], (53)

where I,(a;), Yp(a,) are cylindrical functions of order
1 and 2,

From the condition of convergence of the series
(48) we should put w, = 0 [3], and then we have

Ay =yt o1 (1) Tnpa, (0, (54)
:En —{—(;)1(" l)n 1ﬂ+ao (al)' (55)

From conditions (50) and (52) we obtain

0y = (2—1 - E)/Qlén(al)’ (56)
01 = — By/l,, (). (57)

The denominators of (56) and (57) are not equal to
zero, *

The particular solutions A, and By have been con-
structed in the Appendix (A2-A7), where it is shown
A,, and By, are represented through the Green's func-
tion of the equation in finite differences.

Example 2, To find the temperature distribution
within the region bounded by curve (43), where there
is uniform liberation of heat. At the boundary the
heat is radiated according to Newton's law. The tem-
perature of the external medium is equal to zero [2].

The problem reduces to integration of the equation

2 2
Fu P _ @ onp (58)
axt  oy? K

with the boundary condition

O hy| =0, (59)
on B

where K is the thermal conductivity; Q is the quantity
of heat liberated in unit volume; h is the heat-transfer
coefficient,

*We recall that the least positive root of the func-
tions lay(a;) and I'a, (a;) is larger than a;, [8]. Here
ay — a; = h8/2r (A — 1) > 0, There are no roots,
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We shall choose the special solution
u = uy -+ u,, where Adu, = _9 onD, u,| ==0. {(60)
K B
Then for uy; we have
A, =0 on D, 24 pyl - _Qf‘ii (61)
on B dn |B

We shall use the conformal representation

S

W= S
“+iy 6= (14 A%

(8 -+ 3A8* + 3078, (62)

where £ = p exp i6, A = 2/V3 , and 8 is the length of
are,

For solution of problem (60) we choose the parti-
cular solution

= Lrm= - Lyp (63)

4K 4K

Then for u, we obtain

_ Qs
144 %72 (1 -+ A%)?

Uy =

{(*—1)+02 (o' —1) -+
+ 9A* (0 —1)+[6A (0° — p) +4- 18A% (0 —p)]cos b -+
+ 627 (p*— pPcos 20} . (64)

For the conformal representation (62) the equation
and the boundary conditions (61) transform to the form

d Ouy 0?uy . \
—_ =t ~— =0 on the circle, (685
pdp(pdp>+662 (65)

with the boundary condition

o + (ap - aycos 8) uy =
dp =1
Qse b
= Towk I:—:zi-{—blcose—'rbzcos% ] (66)
where
hS hS A
Q== — (y = —— ; 67
T oz ! = 14+A° (67)
by = {1 - 632 4 3A/(1 + A)% by = (2n + DAL + 1))
by = \/(1 + AH2 (68)

The solution of (65), (66) will be

Qs® [bl 1 ( 2 )‘ . 20,
Uy = —= I T Hag-- Db+ 2 pcos B+
ek ta, 2 \a (@Dl o

+ oy [’;_Ia., (ay) +§(— DAl aay) pteos ”Gj]} ) (69)
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where
o1 = [2by/a, —(2/a,)%ay by + (2/a,)% a, (ag+ 1) b, — 4by/a,] X
X [2gyfa)=
(see (54), (55) and (A5)—(AT)).

CONCLUSIONS

In solving a plane problem of potential theory with
boundary conditions of the third kind [3] we use the
method of conformal mappings onto the unit circle. The
corresponding problem for a circle reduces to solu-
tion of linear equations in finite differences, The
class of regions has been examined in which the
modulus of the derivative of the mapping function is a
trigonometric polynomial, In this case the exact
solution of the problem is represented in the form of
Laplace contour integrals.

For a rather wide class of regions we can obtain
an approximate solution by restricting ourselves to a
finite number of terms in the Fourier series for the
modulus of the derivative of the mapping function,

The method of difference equations may also be
used in solving problems for a circle with mixed
boundary conditions with variable coefficients.

APPENDIX

We shall show that the particular solution of the
inhomogeneous difference equation (49), (51) is rep-
resented through the Green's function of this equa-
tion. To improve the convergence of the series (48),
(69) it is convenient to use a transformation of the
Green's function either in the form of an expansion
in terms of Bessel functions with integral index, or
in the form of a discontinuous function. The Green's
function of (49) satisfies the relations

(4400 8 + - Emnir Tl =By (AD)
where
{ -
6mn = { bom=n
0 mstn.
Then the particular solution of (49) and (52) is
written in the form
A=Y b By= Y \Cm (A2)
m=0 ma=l
From (35) and (29) we may obtain*
. 1 a 1 ) ‘
= tma—n—texpl— L[t — — )1 x
B = 5 p{ 5 ( p }
{ S T G | P (A3)
X fetmotexp | (1= - :

*In (29) it is evidently sufficient to put ¢(t) =
= t™/2mi,
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The integral (A3) allows the expansion

s=-+4o

Ifm ]n—'s —_
G = (@) Ln—s (—a)

, Gyis not an integer;

= s+ a,
s=+
o ! Is—m(al) [n—s (—al) .
gmn - _Z S _‘_]
Ol (—a
L@@ g (A4)
dv )
v=n+j

Using the Lagrange method to solve (Al), we obtain
another representation of the Green's function

G = (=1 ™V o0 (@) Lingay (@1) — Vg, (€0) [npan(ar) ),

nm—1;
gmn:O’ n> m——l, (AS)
whence
Smm = 0, mm—1 = 2/(11, Emm+1 = 0. (AG)

Example . Let

2
An = 2 bm gmn-

m=0

From (Al) and (A6) we obtain

— 2 3
A-—1= an - (_'2_) aob1+ (i) au(ao - l)bz“‘ 21)2 s
. a a, a | a,
A, = —2-b,—(-g— Vay + 1) bs, A, = —— b,
Y a, ) a,
Za=—4 = A_n*-3 =0, o= (2-1‘21)/2]:10(‘11)- (AT)

The representation of the Green's function in the
form (A5) is convenient in the case in which the function
f1 (8) is a trigonometric polynomial (see (66)). In this
case the series (69) converges for any finite values p,
If £,(9) is the complete Fourier series, it is necessary
to use the form (A4). In that case, series (48) con-
verges inside the unit circle of plane £ (see (38)).
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